# FrogJmp – Codility – Solution

Java solution to Codility FrogJmp problem (Lesson 3 – Time Complexity) which scored 100%. The problem is to count the minimum number of jumps from position X to Y. The main strategy is to use division and modulus (remainder) to calculate jumps required.

```123456789101112package com.codility.lesson03.timecomplexity;

public class FrogJump {
public int solution(int X, int Y, int D) {
int distanceToJump = Y - X;
int jumpsRequired = distanceToJump / D;
if(distanceToJump % D != 0) {
jumpsRequired++; //only add extra jump if remainder exists
}
return jumpsRequired;
}
}

```

TestNG test cases for this problem which all passed:

```12345678910111213141516171819202122232425262728293031323334package test.com.codility.lesson03.timecomplexity;

import org.testng.Assert;
import org.testng.annotations.*;

import com.codility.lesson03.timecomplexity.FrogJump;

public class FrogJumpTests {
private FrogJump solution;

@BeforeTest
public void setUp() {
solution = new FrogJump();
}

@DataProvider(name = "test1")
public Object [][] createData1() {
return new Object [][] {
new Object [] { new int [] {    10,      85,     30 },   3 },
new Object [] { new int [] {     1,      14,      3 },   5 },
new Object [] { new int [] {   100,    1001,    100 },  10 },
new Object [] { new int [] {150000,  999999,  10000 },  85 },
new Object [] { new int [] {150000, 1000000,  10000 },  85 },

//X and Y are the same - no jumps required
new Object [] { new int [] {     14,      14,      3 },   0 },
};
}

@Test(dataProvider = "test1")
public void verifySolution(int [] pArgs, int pExpectedJumps) {
Assert.assertEquals(solution.solution(pArgs, pArgs, pArgs), pExpectedJumps);
}
}

```