Java solution to Codility FrogJmp problem (Lesson 3 – Time Complexity) which scored 100%. The problem is to count the minimum number of jumps from position X to Y. The main strategy is to use division and modulus (remainder) to calculate jumps required.
[cc lang="java" escaped="true"]
package com.codility.lesson03.timecomplexity;
public class FrogJump {
public int solution(int X, int Y, int D) {
int distanceToJump = Y - X;
int jumpsRequired = distanceToJump / D;
if(distanceToJump % D != 0) {
jumpsRequired++; //only add extra jump if remainder exists
}
return jumpsRequired;
}
}
[/cc]
TestNG test cases for this problem which all passed:
[cc lang="java" escaped="true"]
package test.com.codility.lesson03.timecomplexity;
import org.testng.Assert;
import org.testng.annotations.*;
import com.codility.lesson03.timecomplexity.FrogJump;
public class FrogJumpTests {
private FrogJump solution;
@BeforeTest
public void setUp() {
solution = new FrogJump();
}
@DataProvider(name = "test1")
public Object [][] createData1() {
return new Object [][] {
new Object [] { new int [] { 10, 85, 30 }, 3 },
new Object [] { new int [] { 1, 14, 3 }, 5 },
new Object [] { new int [] { 100, 1001, 100 }, 10 },
new Object [] { new int [] {150000, 999999, 10000 }, 85 },
new Object [] { new int [] {150000, 1000000, 10000 }, 85 },
//X and Y are the same - no jumps required
new Object [] { new int [] { 14, 14, 3 }, 0 },
};
}
@Test(dataProvider = "test1")
public void verifySolution(int [] pArgs, int pExpectedJumps) {
Assert.assertEquals(solution.solution(pArgs[0], pArgs[1], pArgs[2]), pExpectedJumps);
}
}
[/cc]